IRIDOIDS FROM GENTIANA VERNA

E. MPONDO MPONDO* and J. GARCIA

Laboratoire de Pharmacognosie, UFR de Pharmacie, Université J. Fourier-Grenoble I, Domaine de la Merci, 38700 La Tronche,

(Received in revised form 10 February 1989)

Key Word Index-Gentiana verna; Gentianaceae; iridoids.

Abstract—The isolation of three iridoids from Gentiana verna is reported. These include loganetin, loganin and 4'-m-hydroxybenzoyl loganin which are the first iridoids identified from the title species.

INTRODUCTION

Gentiana verna L. (Gentianaceae) has been investigated for flavones and xanthones [1-3]. Previous studies on this species also resulted in the identification of the known secoiridoid gentiopicroside [4] but no iridoid was reported. This paper deals with the occurrence in G. verna of the known iridoids loganetin (1), loganin (2) and a new iridoid 4'-m-hydroxybenzoyl loganin (3).

RESULTS AND DISCUSSION

The acetone extract of dried and powdered aerial parts of G. verna was successively fractionated on a silica gel column and by centrifugal TLC. The final purification on an HPLC RP-18 column afforded three iridoids (1-3). Compound 1 was identified as loganetin by ¹H NMR with the aid of compared literature values [5] and by FABMS m/z 227 [M-H]⁻, m/z 229 [M+H]⁺. These facts were in accordance with spectral data of the aglycone of loganin (Table 1). Loganetin was first isolated [6] as a natural compound from Desfontainia spinosa (Loganiaceae). This is the second natural occurrence of this compound which we also detected in acetone extracts of fresh aerial parts. Compound 2 was identified as loganin by comparison (Co-TLC, HPLC and spectral data) with an authentic sample and literature values [7].

Compound 3 presented a sulphuric vanillin coloration identical to that of 2 suggesting that it was an iridoid. Its UV spectrum ($\lambda_{\text{max}}^{\text{MeOH}}$ 232, 297 nm), as well as its ¹H NMR values (δ 5.30 H-1, δ 7.41 H-3, δ 3.12 H-5, δ 1.62 – 2.24 H-6 H-8 H-9, δ 4.04 H-7), indicated that 3 consisted of a loganin-like structure and an aromatic moiety. The latter was identified as *m*-hydroxy benzoyl by comparison with the literature NMR values. [8]. Other evidence, such as FABMS m/z 137 [m-hydroxybenzoate] $^-$, m/z 227 [loganine aglucone] $^+$ and in the ¹H NMR spectrum protons above δ 7.00, confirmed this fact. The ¹H NMR spectrum of the acetylated derivative of 3 displayed one aromatic acetyl group (δ 2.34) and four alcoholic acetyls (δ 2.10, 2.04, 2.03, 1.92) attributed to the glucose moiety. The downfield shift of H-4' (δ 4.98) and C-4' (δ 72.9) indicated the acylation by

 $1 \quad R^1 = R^2 = H$

 $2 R^1 = \beta \cdot D \cdot glucopyranosyl, R^2 = H$

RO
$$\frac{1}{2}$$

RO $\frac{1}{2}$

RO $\frac{1}{2}$

RO $\frac{1}{2}$

RO $\frac{1}{2}$

OR $\frac{1}$

OR $\frac{1}{2}$

OR $\frac{1}{2}$

OR $\frac{1}{2}$

OR $\frac{1}{2}$

OR

the benzoic acid on this position. These facts were confirmed by the upfield chemical shift of C-5' (δ 76.4) and C-3' (δ 75.8). Compound 3 was therefore identified as 4'-m-hydroxybenzoyl loganin, a new natural compound.

EXPERIMENTAL

General. NMR spectra were recorded with TMS as int.

Isolation. G. verna was collected when in flower (August 1987) at the Col du Galibier (Isère-France). A voucher specimen has been deposited at the Pharmacognosy laboratory herbarium. Dried and powdered aerial parts (180 g) were successively extracted with n-hexane, C₆H₆, Me₂CO and MeOH. The Me₂CO extract (6 g) was fractionated on silica gel CC (CHCl₃ with increasing MeOH content) and over centrifugal TLC (CHCl₃ with increasing MeOH content). The final purification using

^{*}Author to whom correspondence should be addressed.

Table 1. 1H NMR data of the iridoids 1-3 and 3a

Н	1	2	3	3a
1	4.85 d (4.5)	5.37 d (4.5)	5.30 d (4.5)	5.22 d (4.5)
3	7.40 d (1.5)	7.37 d (1.5)	7.41 d (1.5)	7.35 d (1.5)
4			an 	Autopo lius
5	3.10 m	3.10 dddd (9.5-8-7.5-1.5)	3.12 m	3.00 m
6A	2.26 m	2.25 ddd (14-8-1.5)	2.24 ddd (14-8-1.5)	*1.67-2.24
6 B	1.56 m	1.60 ddd (14-7.5-4.5)	1.62 ddd (14-8-5)	*1.67-2.24
7	4.02 m	4.04 ddd (5-4.5-1.5)	4.04 td (5-1.5)	5.25 m
8	1.86 m	1.86 dqd (9-7.5-5)	1.88 dqd (9-6.5-5)	*1.67-2.24
9	2.07 m	2.03 ddd (9.5-9-4.5)	2.06 td (9-4.5)	*1.67-2.24
10	1.06 d (6.5)	1.08 d (7.5)	1.11 d (6.5)	1.03 d (6.5)
COOMe	3.68 s	3.68 s	3.68 s	3.71 s
Ac			MARINE MARINE	1.92-2.34
1'		4.65 d (8)	4.76 d (8)	4.86 d (8)
4′		3.25-3.40	4.98 t (9)	5.13 t (9)
2"			7.44 dd (1.5~1)	7.76 dd (1.5-1)
4''			7.02 ddd (7.5-1.5-1)	7.46 ddd (7.5-1.5-1)
5"			$7.29 \ t \ (7.5)$	7.26 t (7.5)
6"			7.52 dt (7.5–1)	7.93 dt (7.5-1)

Values in parenthesis are coupling constants in Hz.

Table 2. 13C NMR data of compounds 2 and 3

		*	
С	2*	3	
1	97.6	97.6	
3	152.0	152.0	
4	114.0	114.2	
5	32,1	32.1	
6	42.7	42.7	
7	74.9	74.9†	
8	42.1	42.1	
9	46.4	46.5	
10	13.4	13.4	
COOMe	169.4 and 51.6	167.4 and 51.6	
1'	100.0	100.1	
2'	74.7	75.0†	
3′	77.9	75.8	
4'	71.5	72.9	
5'	78.3	76.4	
6'	62.7	62.4	
1"		132.4	
2"		117.2	
3′′		158.6	
4"		121.5	
5"		130.6	
6"		121.8	
Ar-CO		169.5	

[†]Values may be interchanged.

HPLC on an RP-18 column afforded 1 (1.5 mg) and 3 (5 mg) with H_2O -MeOH (2:3) as eluent and 2 (1.5 mg) with H_2O -MeOH (7:3) as eluent.

Loganetin (1). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 230. FABMS m/z: 229 [M + H]⁺, 211, 179, 151, 107. FABMS m/z: 227 [M - H]⁻, 137, 127,

101. ¹H NMR: CD₃OD, 200 MHz (see Table 1).

Loganin (2). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 230. FABMS m/z: 413 [M + Na]⁺, 391 [M + H]⁺, 369, 299, 277, 229 [M + H – glc]⁺, 207. ¹H NMR: CD₃OD, 300 MHz (see Table 1). ¹³C NMR: CD₃OD, 75 MHz (see Table 2).

4'-m-Hydroxybenzoyl loganin (3). UV λ_{max}^{MeOH} nm: 232, 297. FABMS m/z: 533 [M+Na]⁺, 511 [M+H]⁺, 455, 283, 253, 229 [M+H-glucobenzoyl]⁺, 211, 179, 151, 107. FABMS m/z: 509 [M-H]⁻, 319, 305, 277, 227 [M-glucobenzoyl]⁻, 153, 137, 127, 101. ¹H NMR: CD₃OD, 300 MHz (see Table 1). ¹³C NMR: CD₃OD, 75 MHz (see Table 2).

Acetylation of 3. This was conducted by the usual method with Ac_2O -pyridine. The acetylated derivative (3a) was purified by HPLC on silica gel using *n*-hexane-iso-PrOH-MeOH (14:3:3) as eluent.

Acknowledgements—We thank Mr C. Bosso (CERMAV) for MS measurements and Mr G. Cartier for help in collecting plants. We also thank Miss N. Durand for secretarial help.

REFERENCES

- Hostettmann, K. and Jacot-Guillarmod, A. (1974) Helv. Chim. Acta 57, 1155.
- Hostettmann, K. and Jacot-Guillarmod, A. (1975) Helv. Chim. Acta 58, 130.
- 3. Hostettmann, K. and Jacot-Guillarmod, A. (1977) Phytochemistry 16, 481.
- 4. Korte, F. (1954) Z. Naturforsch. 9b, 354.
- 5. Jensen, S. R., Lyse-Petersen, S. E. and Nielsen, B. J. (1979) Phytochemistry 18, 273.
- 6. Houghton, P. J. and Ming, M. (1985) Phytochemistry 24, 1841.
- 7. Garcia, J. and Chulia, A. J. (1986) Planta Med. 52, 327.
- 8. Scott, K. N. (1972) J. Am. Chem. Soc. 94, 8564.

^{*}Not clear due to overlapping.

^{*}Values contained in ref. [7].